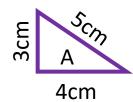
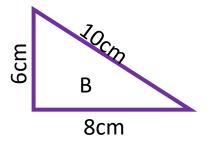

Mrs Mountney 's Helpful Hints

-Similarity


Shapes are said to be similar if they are an enlargement of each other



Shape
$$A \times 0.5 = Shape B$$

 $8 \times 0.5 = 4$
 $5 \times 0.5 = 2.5$

Scale Factors

These two triangles are similar to each other. To calculate the scale factor simply divide two of the similar sides by each other.

$$6 \div 3 = 2$$

 $8 \div 4 = 2$

$$10 \div 5 = 2$$

Therefore the scale factor is 2.

Length

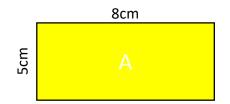
The perimeter of shape B is 2 times greater than the perimeter of shape A.

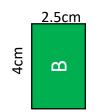
Shape
$$A: 5 + 3 + 4$$

= 12 cm
Shape $B: 10 + 8 + 6$
= 24cm
 $24 \div 12 = 2$
 $SF = 2$

Remember to divide more than one side to ensure you get the same number,

Area

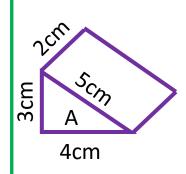

The area of shape B is 4 times greater than the area of shape A.

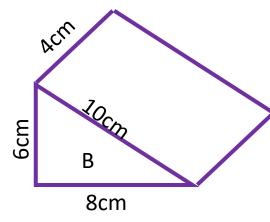

Shape A:
$$\frac{4 \times 3}{2}$$

= 6 cm^2
Shape B: $\frac{8 \times 6}{2}$
= 24 cm^2
 $24 \div 6 = 4$
 $SF = 4$

Mrs Mountney 's Helpful Hints

-Similarity


Shapes are said to be similar if they are an enlargement of each other



Shape
$$A \times 0.5 = Shape B$$

 $8 \times 0.5 = 4$
 $5 \times 0.5 = 2.5$

Scale Factors

Volume

The volume of shape B is 8 times greater than the volume of shape A.

Shape A:
$$\frac{4 \times 3 \times 2}{2}$$

= 12 cm^3

Shape
$$B: \frac{8 \times 6 \times 4}{2}$$
$$= 96cm^3$$

$$96 \div 12 = 8$$
$$SF = 8$$

In summary

	Shape A	Scale Factor	Shape B
Length	3	× 2	6
Area	6	× 4	24
Volume	12	× 8	96

When two or more shapes are similar the following relationship happens with the scale factors:

Length
$$\times SF$$

Area $\times SF^2$
Volume $\times SF^3$